Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
2.
J Biol Chem ; 294(21): 8480-8489, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30940649

RESUMO

Among the repertoire of immunoregulatory proteins encoded by myxoma virus, M013 is a viral homologue of the viral pyrin domain-only protein (vPOP) family. In myeloid cells, M013 protein has been shown to inhibit both the inflammasome and NF-κB signaling pathways by direct binding to ASC1 and NF-κB1, respectively. In this study, a three-dimensional homology model of the M013 pyrin domain (PYD) was built based on similarities to known PYD structures. A distinctive feature of the deduced surface electrostatic map of the M013 PYD is the presence of a negatively region consisting of numerous aspartate and glutamate residues in close proximity. Single-site mutations of aspartate and glutamate residues reveal their role in interactions with ASC-1. The biological significance of charge complementarity in the M013-ASC-1 interaction was further confirmed by functional assays of caspase-1 activation and subsequent secretion of cytokines. M013 also has a unique 33-residue C-terminal tail that follows the N-terminal PYD, and it is enriched in positively charged residues. Deletion of the tail of M013 significantly inhibited the interactions between M013 and NF-κB1, thus compromising the ability of the viral protein to suppress the secretion of pro-inflammatory cytokines. These results demonstrate that vPOP M013 exploits distinct structural motifs to regulate both the inflammasome and NF-κB pathways.


Assuntos
Myxoma virus , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Proteínas Virais , Motivos de Aminoácidos , Substituição de Aminoácidos , Caspase 1/genética , Caspase 1/imunologia , Células HeLa , Humanos , Inflamassomos/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Myxoma virus/química , Myxoma virus/genética , Myxoma virus/imunologia , NF-kappa B/genética , Domínios Proteicos , Transdução de Sinais/genética , Células THP-1 , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
3.
Science ; 363(6433): 1319-1326, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30765607

RESUMO

In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.


Assuntos
Adaptação Biológica/genética , Imunidade Inata/genética , Myxoma virus/imunologia , Mixomatose Infecciosa/imunologia , Coelhos/genética , Coelhos/virologia , Alelos , Animais , Austrália , Evolução Molecular , França , Frequência do Gene , Variação Genética , Interferon alfa-2/genética , Interferon alfa-2/imunologia , Mixomatose Infecciosa/genética , Polimorfismo de Nucleotídeo Único , População , Coelhos/imunologia , Reino Unido
4.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27903800

RESUMO

Myxomatosis is a recurrent problem on rabbit farms throughout Europe despite the success of vaccines. To identify gene variations of field and vaccine strains that may be responsible for changes in virulence, immunomodulation, and immunoprotection, the genomes of 6 myxoma virus (MYXV) strains were sequenced: German field isolates Munich-1, FLI-H, 2604, and 3207; vaccine strain MAV; and challenge strain ZA. The analyzed genomes ranged from 147.6 kb (strain MAV) to 161.8 kb (strain 3207). All sequences were affected by several mutations, covering 24 to 93 open reading frames (ORFs) and resulted in amino acid substitutions, insertions, or deletions. Only strains Munich-1 and MAV revealed the deletion of 10 ORFs (M007L to M015L) and 11 ORFs (M007L to M008.1L and M149R to M008.1R), respectively. Major differences were observed in the 27 immunomodulatory proteins encoded by MYXV. Compared to the reference strain Lausanne, strains FLI-H, 2604, 3207, and ZA showed the highest amino acid identity (>98.4%). In strains Munich-1 and MAV, deletion of 5 and 10 ORFs, respectively, was observed, encoding immunomodulatory proteins with ankyrin repeats or members of the family of serine protease inhibitors. Furthermore, putative immunodominant surface proteins with homology to vaccinia virus (VACV) were investigated in the sequenced strains. Only strain MAV revealed above-average frequencies of amino acid substitutions and frameshift mutations. Finally, we performed recombination analysis and found signs of recombination in vaccine strain MAV. Phylogenetic analysis showed a close relationship of strain MAV and the MSW strain of Californian MYXV. However, in a challenge model, strain MAV provided full protection against lethal challenges with strain ZA. IMPORTANCE: Myxoma virus (MYXV) is pathogenic for European rabbits and two North American species. Due to sophisticated strategies in immune evasion and oncolysis, MYXV is an important model virus for immunological and pathological research. In its natural hosts, MYXV causes a benign infection, whereas in European rabbits, it causes the lethal disease myxomatosis. Since the introduction of MYXV into Australia and Europe for the biological control of European rabbits in the 1950s, a coevolution of host and pathogen has started, selecting for attenuated virus strains and increased resistance in rabbits. Evolution of viruses is a continuous process and influences the protective potential of vaccines. In our analyses, we sequenced 6 MYXV field, challenge, and vaccine strains. We focused on genes encoding proteins involved in virulence, host range, immunomodulation, and envelope composition. Genes affected most by mutations play a role in immunomodulation. However, attenuation cannot be linked to individual mutations or gene disruptions.


Assuntos
Variação Genética , Genoma Viral , Myxoma virus/genética , Infecções por Poxviridae/virologia , Substituição de Aminoácidos , Animais , Repetição de Anquirina , Apoptose , Linhagem Celular , Chlorocebus aethiops , Evolução Molecular , Genômica/métodos , Imunomodulação , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/virologia , Leucócitos/imunologia , Leucócitos/metabolismo , Mutação , Myxoma virus/classificação , Myxoma virus/imunologia , Fases de Leitura Aberta , Filogenia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/prevenção & controle , Ligação Proteica , Mapeamento de Interação de Proteínas , Coelhos , Receptores Imunológicos , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/genética , Vacinas Virais/imunologia
5.
Prev Vet Med ; 133: 108-113, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663647

RESUMO

Vaccination campaigns against myxomatosis and rabbit haemorrhagic disease (RHD) are commonly used in translocation programs conducted for the purpose of recovering wild European rabbit populations in Iberian Mediterranean ecosystems. In most cases rabbits are vaccinated 'blind' (i.e. without assessing their prior immunological status) for economic and logistic reasons. However, there is conflicting evidence on the effectiveness of such an approach. We tested whether blind vaccination against myxomatosis and rabbit haemorrhagic disease improved rabbit survival in a rabbit translocation program where wild rabbits were kept in semi-natural conditions in three enclosures. We conducted nine capture sessions over two years (2008-2010) and used the information collected to compare the survival of vaccinated (n=511) versus unvaccinated (n=161) adult wild rabbits using capture-mark-recapture analysis. Average monthly survival was no different for vaccinated versus unvaccinated individuals, both in the period between release and first capture (short-term) and after the first capture onward (long-term). Rabbit survival was lower in the short term than in the long term regardless of whether rabbits were vaccinated or not. Lower survival in the short-term could be due to the stress induced by the translocation process itself (e.g. handling stress). However, we did not find any overall effect of vaccination on survival which could be explained by two non-exclusive reasons. First, interference of the vaccine with the natural antibodies in the donor population. Due to donor populations have high density of rabbits with, likely, high prevalence of antibodies as a result of previous natural exposure to these diseases. Second, the lack of severe outbreaks during the study period. Based on our findings we argue that blind vaccination of adult rabbits in translocation programs may be often mostly ineffective and unnecessarily costly. In particular, since outbreaks are hard to predict and vaccination of rabbits with natural antibodies is ineffective, it is crucial to assess the immunological status of the donor population before translocating adult rabbits.


Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/imunologia , Myxoma virus/imunologia , Mixomatose Infecciosa/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Animais Selvagens , Infecções por Caliciviridae/prevenção & controle , Feminino , Masculino , Mixomatose Infecciosa/virologia , Coelhos , Espanha
6.
Vet Microbiol ; 178(3-4): 208-16, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26009303

RESUMO

Despite the success of vaccination against myxoma virus, myxomatosis remains a problem on rabbit farms throughout Spain and Europe. In this study we set out to evaluate possible causes of myxoma virus (MYXV) vaccine failures addressing key issues with regard to pathogen, vaccine and vaccination strategies. This was done by genetically characterising MYXV field isolates from farm outbreaks, selecting a representative strain for which to assay its virulence and measuring the protective capability of a commercial vaccine against this strain. Finally, we compare methods (route) of vaccine administration under farm conditions and evaluate immune response in vaccinated rabbits. The data presented here show that the vaccine tested is capable of eliciting protection in rabbits that show high levels of seroconversion. However, the number of animals failing to seroconvert following subcutaneous vaccination may leave a large number of rabbits unprotected following vaccine administration. Successful vaccination requires the strict implication of workable, planned, on farm programs. Following this, analysis to confirm seroconversion rates may be advisable. Factors such as the wild rabbit reservoir, control of biting insects and good hygienic practices must be taken into consideration to prevent vaccine failures from occurring.


Assuntos
Surtos de Doenças/veterinária , Myxoma virus/imunologia , Mixomatose Infecciosa/epidemiologia , Vacinação/veterinária , Vacinas Virais/imunologia , Criação de Animais Domésticos , Animais , Sequência de Bases , Geografia , Dados de Sequência Molecular , Myxoma virus/classificação , Myxoma virus/genética , Mixomatose Infecciosa/prevenção & controle , Coelhos , Análise de Sequência de DNA/veterinária , Espanha/epidemiologia , Virulência
7.
Blood ; 125(24): 3778-88, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25904246

RESUMO

Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.


Assuntos
Mieloma Múltiplo/terapia , Myxoma virus/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Ativação Linfocitária , Infecções por Poxviridae/imunologia , Linfócitos T/citologia , Infecções Tumorais por Vírus/imunologia
8.
PLoS One ; 10(2): e0118806, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705900

RESUMO

Myxoma virus (MYXV) induces a lethal disease called Myxomatosis in European rabbits. MYXV is one of the rare viruses that encodes an α2,3-sialyltransferase through its M138L gene. In this study, we showed that although the absence of the enzyme was not associated with any in vitro deficit, the M138L deficient strains are highly attenuated in vivo. Indeed, while all rabbits infected with the parental and the revertant strains died within 9 days post-infection from severe myxomatosis, all but one rabbit inoculated with the M138L deficient strains survived the infection. In primary lesions, this resistance to the infection was associated with an increased ability of innate immune cells, mostly neutrophils, to migrate to the site of virus replication at 4 days post-infection. This was followed by the development of a better specific immune response against MYXV. Indeed, at day 9 post-infection, we observed an important proliferation of lymphocytes and an intense congestion of blood vessels in lymph nodes after M138L knockouts infection. Accordingly, in these rabbits, we observed an intense mononuclear cell infiltration throughout the dermis in primary lesions and higher titers of neutralizing antibodies. Finally, this adaptive immune response provided protection to these surviving rabbits against a challenge with the MYXV WT strain. Altogether, these results show that expression of the M138L gene contributes directly or indirectly to immune evasion by MYXV. In the future, these results could help us to better understand the pathogenesis of myxomatosis but also the importance of glycans in regulation of immune responses.


Assuntos
Tolerância Imunológica/imunologia , Myxoma virus/imunologia , Mixomatose Infecciosa/imunologia , Sialiltransferases/imunologia , Proteínas Virais/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , DNA Viral/sangue , DNA Viral/genética , DNA Viral/imunologia , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Myxoma virus/patogenicidade , Myxoma virus/fisiologia , Mixomatose Infecciosa/sangue , Mixomatose Infecciosa/virologia , Coelhos , Sialiltransferases/genética , Sialiltransferases/metabolismo , Análise de Sobrevida , Fatores de Tempo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
9.
Cancer Res ; 74(24): 7260-73, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336188

RESUMO

Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Myxoma virus/imunologia , Terapia Viral Oncolítica , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/virologia , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Citometria de Fluxo , Glioma/imunologia , Glioma/virologia , Humanos , Imunidade Celular/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Vírus Oncolíticos/imunologia , Sirolimo/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Vet Dermatol ; 25(6): 563-6, e100, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25227274

RESUMO

BACKGROUND: A novel bivalent vaccine to protect against myxomatosis and rabbit haemorrhagic disease is commercially available for pet rabbits. HYPOTHESIS/OBJECTIVES: To describe the appearance of cutaneous lesions arising in pet rabbits positive for myxoma virus (MV) by RT-PCR evaluation shortly after vaccination. ANIMALS: Four pet rabbits presenting with papular, crusting skin lesions ~10 days after vaccination. METHODS: Histological evaluation of formalin-fixed skin biopsies obtained from lesional skin (case 1). Real-time polymerase chain reaction (RT-PCR) evaluation of paraffin-embedded tissue from skin biopsies (case 1) and crusts obtained from the lesion surface (cases 2-4) for myxoma virus are reported as cycle threshold (Ct ) values. RESULTS: Lesions affecting the ear pinna, dorsal aspect of the nose, vulva and/or conjunctiva are reported. Histopathological findings included severe ulcerative, necrotizing dermatitis and intralesional cytoplasmic inclusion bodies in myxoma cells. DNA was amplified from all the paraffin-embedded skin biopsies (Ct  = 34-35) and crusts (Ct  = 20-24). CONCLUSIONS AND CLINICAL IMPORTANCE: Although a wild virus challenge cannot be definitively excluded, veterinarians and pet-owners should be aware that cutaneous lesions have been observed after vaccination with this novel vaccine in low numbers of rabbits.


Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/imunologia , Myxoma virus/imunologia , Mixomatose Infecciosa/prevenção & controle , Coelhos , Dermatopatias/veterinária , Vacinas Virais/efeitos adversos , Animais , Infecções por Caliciviridae/prevenção & controle , Feminino , Coelhos/virologia , Dermatopatias/etiologia
11.
Vet Res Commun ; 38(1): 59-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307458

RESUMO

Beta-cryptoxanthin (b-Cr) is a pro-vitamin A and one of the major carotenoids that can be commonly found in mammalian serum and tissues. Foods rich in certain fatty acids are known to be effective to gain a healthy immune system. In the present study, we evaluated the effect of b-Cr on rabbit humoral and cellular immune responses to have a better vision about the mechanism of effect of carotenoids on immune system. Twenty rabbits were randomly divided into five groups (4 per group): Groups consisted of: 1) control group (normal saline; 2) b-Cr (control); 3) vaccine control; 4) 5 mg/kg b-Cr o.p. + vaccine; 5) 10 mg/kg b-Cr o.p. + vaccine. Blood samples were obtained from the marginal ear artery at three time points: days 0, 14 and 21 of the study. Blood CD4+ and CD8+ lymphocytes and Serum Immunoglobulin and Cytokines content were evaluated. Results show that b-Cr administration increased the blood CD4+ lymphocytes count (P > 0.01). Serum IgG, IgM and IgA levels increased (P > 0.05) following b-Cr administration. b-Cr treatment increased serum IL-4 levels (P > 0.05). According to presented results, b-Cr may increase the humoral immunity in mammals. So, it would possible has a potentially beneficial effect on health and on prevention of the immunity related diseases.


Assuntos
Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Coelhos/imunologia , Xantofilas/farmacologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Criptoxantinas , Imunoglobulinas/sangue , Interferon gama/sangue , Interleucina-4/sangue , Masculino , Myxoma virus/imunologia , Distribuição Aleatória , Vacinas Virais/imunologia
12.
Vaccine ; 31(39): 4252-8, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23726825

RESUMO

Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials.


Assuntos
Myxoma virus/patogenicidade , Terapia Viral Oncolítica , Vírus Oncolíticos/patogenicidade , Animais , Ensaios Clínicos como Assunto , Humanos , Modelos Animais , Myxoma virus/imunologia , Neoplasias/terapia , Vírus Oncolíticos/fisiologia , Coelhos/virologia
13.
PLoS One ; 8(6): e65801, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762429

RESUMO

Despite promising preclinical studies, oncolytic viral therapy for malignant gliomas has resulted in variable, but underwhelming results in clinical evaluations. Of concern are the low levels of tumour infection and viral replication within the tumour. This discrepancy between the laboratory and the clinic could result from the disparity of xenograft versus syngeneic models in determining in vivo viral infection, replication and treatment efficacy. Here we describe a panel of primary mouse glioma lines derived from Nf1 (+/-) Trp53 (+/-) mice in the C57Bl/6J background for use in the preclinical testing of the oncolytic virus Myxoma (MYXV). These lines show a range of susceptibility to MYXV replication in vitro, but all succumb to viral-mediated cell death. Two of these lines orthotopically grafted produced aggressive gliomas. Intracranial injection of MYXV failed to result in sustained viral replication or treatment efficacy, with minimal tumour infection that was completely resolved by 7 days post-infection. We hypothesized that the stromal production of Type-I interferons (IFNα/ß) could explain the resistance seen in these models; however, we found that neither the cell lines in vitro nor the tumours in vivo produce any IFNα/ß in response to MYXV infection. To confirm IFNα/ß did not play a role in this resistance, we ablated the ability of tumours to respond to IFNα/ß via IRF9 knockdown, and generated identical results. Our studies demonstrate that these syngeneic cell lines are relevant preclinical models for testing experimental glioma treatments, and show that IFNα/ß is not responsible for the MYXV treatment resistance seen in syngeneic glioma models.


Assuntos
Neoplasias Encefálicas/terapia , Resistência à Doença/imunologia , Glioma/terapia , Myxoma virus/crescimento & desenvolvimento , Proteínas de Neurofilamentos/imunologia , Terapia Viral Oncolítica , Proteína Supressora de Tumor p53/imunologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistência à Doença/genética , Feminino , Glioma/genética , Glioma/imunologia , Glioma/patologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/deficiência , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Myxoma virus/imunologia , Proteínas de Neurofilamentos/deficiência , Proteínas de Neurofilamentos/genética , Transplante Isogênico , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Wildl Dis ; 49(1): 10-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23307367

RESUMO

The interaction among several parasites in European rabbits (Oryctolagus cuniculus) is crucial to host fitness and to the epidemiology of myxomatosis and rabbit hemorrhagic disease. These diseases have caused significant reductions in rabbit populations on the Iberian Peninsula. Most studies have focused on the epidemiology and pathogenesis of these viruses individually, and little is known about interactions between these viruses and other parasites. Taking advantage of an experimental restocking program in Spain, the effects of coccidian and nematode infections on the probability of having detectable antibody to myxoma and rabbit hemorrhagic disease viruses were tested in European wild rabbits. For 14 mo, we monitored rabbit abundance and parasite loads (coccidia and nematodes) in three reintroduced rabbit populations. While coccidian and nematode loads explained seasonal antibody prevalences to myxoma virus, the pattern was less clear for rabbit hemorrhagic disease. Contrary to expectations, prevalence of antibody to myxoma virus was inversely proportional to coccidian load, while nematode load seemed to play a minor role. These results have implications for viral disease epidemiology and for disease management intended to increase rabbit populations in areas where they are important for ecosystem conservation.


Assuntos
Infecções por Caliciviridae/veterinária , Coccidiose/veterinária , Vírus da Doença Hemorrágica de Coelhos/imunologia , Myxoma virus/imunologia , Mixomatose Infecciosa/imunologia , Infecções por Nematoides/veterinária , Coelhos , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/imunologia , Coccidiose/epidemiologia , Mixomatose Infecciosa/epidemiologia , Infecções por Nematoides/epidemiologia , Carga Parasitária , Prevalência , Coelhos/imunologia , Coelhos/parasitologia , Coelhos/virologia
15.
PLoS One ; 7(5): e36823, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606294

RESUMO

Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h) gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of myxoma virus.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Imunidade Inata , Proteínas de Ligação a RNA/imunologia , Vírus Vaccinia/imunologia , Proteínas Virais/imunologia , Animais , Cloroquina/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Regulação para Baixo , Humanos , Interferon-alfa/biossíntese , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Myxoma virus/genética , Myxoma virus/imunologia , Myxoma virus/patogenicidade , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Coelhos , Receptor 7 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Vírus Vaccinia/genética , Vírus Vaccinia/patogenicidade , Proteínas Virais/química , Proteínas Virais/genética
16.
Biol Blood Marrow Transplant ; 18(10): 1540-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22516053

RESUMO

Autologous stem cell transplantation and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after autologous stem cell transplantation. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells. The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34(+) hematopoietic stem and progenitor cells. These 2 features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo rabbit-specific oncolytic poxvirus called myxoma virus treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138(+) myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts before reinfusion.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Mieloma Múltiplo/prevenção & controle , Myxoma virus/imunologia , Células-Tronco Neoplásicas/imunologia , Vírus Oncolíticos/imunologia , Animais , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Apoptose/imunologia , Células Cultivadas , Genes Reporter , Proteínas de Fluorescência Verde , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Células-Tronco Neoplásicas/transplante , Células-Tronco Neoplásicas/virologia , Coelhos , Prevenção Secundária , Sindecana-1/imunologia , Sindecana-1/metabolismo , Transplante Autólogo , Transplante Heterólogo
18.
Vet Rec ; 170(12): 309, 2012 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-22266680

RESUMO

A novel, recombinant myxoma virus-rabbit haemorrhagic disease virus (RHDV) vaccine has been developed for the prevention of myxomatosis and rabbit haemorrhagic disease (RHD). A number of laboratory studies are described illustrating the safety and efficacy of the vaccine following subcutaneous administration in laboratory rabbits from four weeks of age onwards. In these studies, both vaccinated and unvaccinated control rabbits were challenged using pathogenic strains of RHD and myxoma viruses, and 100 per cent of the vaccinated rabbits were protected against both myxomatosis and RHD.


Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/imunologia , Myxoma virus/imunologia , Mixomatose Infecciosa/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Infecções por Caliciviridae/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/veterinária , Coelhos , Vacinas Combinadas/imunologia
19.
Vaccine ; 30(9): 1609-16, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22244980

RESUMO

Recombinant poxviruses are well suited for the development of new vaccine vectors. Our previous data supported the idea that Myxomavirus (MYXV) is efficient at priming antibody responses in sheep. To provide definitive evidence on the potential of MYXV for vaccination against infectious diseases in ruminants, we investigated the immune protection provided by recombinant MYXV against bluetongue, a devastating disease in sheep. To test this concept, sheep were injected twice with an MYXV expressing the immunodominant VP2 protein (SG33-VP2). The SG33-VP2 vector promoted the production of neutralising antibodies and partially protected sheep against disease after challenge with a highly virulent strain of serotype-8 bluetongue virus (BTV-8). In contrast, an MYXV expressing both VP2 and VP5 proteins (SG33-VP2/5) elicited very little protection. The expression levels of the VP2 and VP5 proteins suggested that, greater than the co-expression of the VP5 protein which was previously thought to favour anti-VP2 antibody response, the high expression of VP2 may be critical in the MYXV context to stimulate a protective response in sheep. This highlights the requirement for a careful examination of antigen expression before any conclusion can be drawn on the respective role of the protective antigens. As a proof of principle, our study shows that an MYXV vaccine vector is possible in ruminants.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/prevenção & controle , Myxoma virus/imunologia , Carneiro Doméstico/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Masculino , Ovinos/imunologia , Ovinos/virologia , Carneiro Doméstico/virologia
20.
J Virol ; 85(23): 12505-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957307

RESUMO

The myxoma virus (MYXV)-encoded pyrin domain-containing protein M013 coregulates inflammatory responses mediated by both the inflammasome and the NF-κB pathways. Infection of human THP-1 monocytic cells with a MYXV construct deleted for the M013 gene (vMyxM013-KO), but not the parental MYXV, activates both the inflammasome and NF-κB pathways and induces a spectrum of proinflammatory cytokines and chemokines, like interleukin-1ß (IL-1ß), tumor necrosis factor (TNF), IL-6, and monocyte chemoattractant protein 1. Here, we report that vMyxM013-KO virus-mediated activation of inflammasomes and secretion of IL-1ß are dependent on the adaptor protein ASC, caspase-1, and NLRP3 receptor. However, vMyxM013-KO virus-mediated activation of NF-κB signaling, which induces TNF secretion, was independent of ASC, caspase-1, and either the NLRP3 or AIM2 inflammasome receptors. We also report that early synthesis of pro-IL-1ß in response to vMyxM013-KO infection is dependent upon the components of the inflammasome complex. Activation of the NLRP3 inflammasome and secretion of IL-1ß was also dependent on the release of cathepsin B and production of reactive oxygen species (ROS). By using small interfering RNA screening, we further demonstrated that, among the RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs), only TLR2, TLR6, TLR7, and TLR9 contribute to the NF-κB-dependent secretion of TNF and the inflammasome-dependent secretion of IL-1ß in response to vMyxM013-KO virus infection. Additionally, we demonstrate that early triggering of the mitogen-activated protein kinase pathway by vMyxM013-KO virus infection of THP-1 cells plays a critical common upstream role in the coordinate induction of both NF-κB and inflammasome pathways. We conclude that an additional cellular sensor(s)/receptor(s) in addition to the known RLRs/TLRs plays a role in the M013 knockout virus-induced activation of NF-κB pathway signaling, but the activation of inflammasomes entirely depends on sensing by the NLRP3 receptor in response to vMyxM013-KO infection of human myeloid cells.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Células Mieloides/metabolismo , Myxoma virus/genética , NF-kappa B/metabolismo , Infecções por Poxviridae/imunologia , Receptores Toll-Like/metabolismo , Infecções Tumorais por Vírus/imunologia , Proteínas Virais/fisiologia , Western Blotting , Proteínas de Transporte/genética , Caspase 1/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Myxoma virus/imunologia , NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Poxviridae/genética , Infecções por Poxviridae/virologia , Estrutura Terciária de Proteína , Pirina , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...